Home
>
Section
>
Chapter
Fazelpour, S.; Vejdani-Jahromi, M.; Kaliaev, A.; Qiu, E.; Goodman, D.; Andreu-Arasa, V.C.; Fujima, N.; Sakai, O.
Head and Neck 45(11): 2882-2892
2023
ISSN/ISBN: 1097-0347 PMID: 37740534 Accession:090565430Full-Text Article emailed within 1 workday
Payments are secure & encrypted
Summary
Human papillomavirus (HPV) status influences prognosis in oropharyngeal cancer (OPC). Identifying high-risk patients are critical to improving treatment. We aim to provide a noninvasive opportunity for managing OPC patients by training multiple machine learning pipelines to determine the best model for characterizing HPV status and survival. Multi-parametric algorithms were designed using a 492 OPC patient database. HPV status incorporated age, sex, smoking/drinking habits, cancer subsite, TNM, and AJCC 7th edition staging. Survival considered HPV model inputs plus HPV status. Patients were split 4:1 training: testing. Algorithm efficacy was assessed through accuracy and area under the receiver operator characteristic curve (AUC). From 31 HPV status models, ensemble yielded 0.83 AUC and 78.7% accuracy. From 38 survival models, ensemble yielded 0.91 AUC and 87.7% accuracy. Results reinforce artificial intelligence's potential to use tumor imaging and patient characterizations for HPV status and outcome prediction. Utilizing these algorithms can optimize clinical guidance and patient care noninvasively.References
Sim, Y.; Kim, M.; Kim, J.; Lee, S.-K.; Han, K.; Sohn, B. 2024: Multiparametric MRI-based radiomics model for predicting human papillomavirus status in oropharyngeal squamous cell carcinoma: optimization using oversampling and machine learning techniques European Radiology 34(5): 3102-3112
İnce, O.; Uysal, E.; Durak, G.ör.; Önol, S.; Dönmez Yılmaz, B.; Ertürk, Şük.ü M.; Önder, H. 2023: Prediction of carcinogenic human papillomavirus types in cervical cancer from multiparametric magnetic resonance images with machine learning-based radiomics models Diagnostic and Interventional Radiology 29(3): 460-468
Hatten, K.M.; Amin, J.; Isaiah, A. 2020: Machine Learning Prediction of Extracapsular Extension in Human Papillomavirus-Associated Oropharyngeal Squamous Cell Carcinoma Otolaryngology--Head and Neck Surgery: Official Journal of American Academy of Otolaryngology-Head and Neck Surgery 163(5): 992-999
Beesley, L.J.; Hawkins, P.G.; Amlani, L.M.; Bellile, E.L.; Casper, K.A.; Chinn, S.B.; Eisbruch, A.; Mierzwa, M.L.; Spector, M.E.; Wolf, G.T.; Shuman, A.G.; Taylor, J.M.G. 2019: Individualized survival prediction for patients with oropharyngeal cancer in the human papillomavirus era Cancer 125(1): 68-78
Faraji, F.; Rettig, E.M.; Tsai, H.-L.; El Asmar, M.; Fung, N.; Eisele, D.W.; Fakhry, C. 2019: The prevalence of human papillomavirus in oropharyngeal cancer is increasing regardless of sex or race, and the influence of sex and race on survival is modified by human papillomavirus tumor status Cancer 125(5): 761-769
Choi, Y.; Nam, Y.; Jang, J.; Shin, N.-Y.; Ahn, K.-J.; Kim, B.-S.; Lee, Y.-S.; Kim, M.-S. 2020: Prediction of Human Papillomavirus Status and Overall Survival in Patients with Untreated Oropharyngeal Squamous Cell Carcinoma: Development and Validation of CT-Based Radiomics AJNR. American Journal of Neuroradiology 41(10): 1897-1904
Boot, P.A.; Mes, S.W.; de Bloeme, C.M.; Martens, R.M.; Leemans, C.R.é; Boellaard, R.; van de Wiel, M.A.; de Graaf, P. 2023: Magnetic resonance imaging based radiomics prediction of Human Papillomavirus infection status and overall survival in oropharyngeal squamous cell carcinoma Oral Oncology 137: 106307
Pan, X.; Feng, T.; Liu, C.; Savjani, R.R.; Chin, R.K.; Sharon Qi, X. 2023: A survival prediction model via interpretable machine learning for patients with oropharyngeal cancer following radiotherapy Journal of Cancer Research and Clinical Oncology 149(10): 6813-6825
Migliorelli, A.; Manuelli, M.; Ciorba, A.; Stomeo, F.; Pelucchi, S.; Bianchini, C. 2024: Role of Artificial Intelligence in Human Papillomavirus Status Prediction for Oropharyngeal Cancer: a Scoping Review Cancers 16(23)
Woo, C.; Jo, K.H.; Sohn, B.; Park, K.; Cho, H.; Kang, W.J.; Kim, J.; Lee, S.-K. 2023: Development and Testing of a Machine Learning Model Using 18F-Fluorodeoxyglucose PET/CT-Derived Metabolic Parameters to Classify Human Papillomavirus Status in Oropharyngeal Squamous Carcinoma Korean Journal of Radiology 24(1): 51-61
Goel, A.N.; Frangos, M.; Raghavan, G.; Sangar, S.; Lazaro, S.; Wang, M.B.; Long, J.L.; St John, M.A. 2019: Survival impact of treatment delays in surgically managed oropharyngeal cancer and the role of human papillomavirus status Head and Neck 41(6): 1756-1769
Fujima, N.; Andreu-Arasa, V.C.; Meibom, S.K.; Mercier, G.A.; Truong, M.T.; Sakai, O. 2020: Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: a hypothesis-generating study European Journal of Radiology 126: 108936
Suh, C.Hyun.; Lee, K.Hwa.; Choi, Y.Jun.; Chung, S.Rom.; Baek, J.Hwan.; Lee, J.Hyun.; Yun, J.; Ham, S.; Kim, N. 2020: Oropharyngeal squamous cell carcinoma: radiomic machine-learning classifiers from multiparametric MR images for determination of HPV infection status Scientific Reports 10(1): 17525
Granata, R.; Miceli, R.; Orlandi, E.; Perrone, F.; Cortelazzi, B.; Franceschini, M.; Locati, L.D.; Bossi, P.; Bergamini, C.; Mirabile, A.; Mariani, L.; Olmi, P.; Scaramellini, G.; Potepan, P.; Quattrone, P.; Ang, K.K.; Licitra, L. 2012: Tumor stage, human papillomavirus and smoking status affect the survival of patients with oropharyngeal cancer: an Italian validation study Annals of Oncology: Official Journal of the European Society for Medical Oncology 23(7): 1832-1837
Toya, R.; Matsuyama, T.; Saito, T.; Fukugawa, Y.; Shiraishi, S.; Murakami, D.; Orita, Y.; Hirai, T.; Oya, N. 2023: Prevalence and Risk Factors for Retropharyngeal and Retro-Styloid Lymph Node Metastasis in Hypopharyngeal Carcinoma International Journal of Radiation Oncology Biology Physics 117(2s): E630
Spadarella, G.; Ugga, L.; Calareso, G.; Villa, R.; D'Aniello, S.; Cuocolo, R. 2022: The impact of radiomics for human papillomavirus status prediction in oropharyngeal cancer: systematic review and radiomics quality score assessment Neuroradiology 64(8): 1639-1647
Bos, P.; van den Brekel, M.W.M.; Taghavi, M.; Gouw, Z.A.R.; Al-Mamgani, A.; Waktola, S.; J W L Aerts, H.; Beets-Tan, R.G.H.; Castelijns, J.A.; Jasperse, B. 2022: Largest diameter delineations can substitute 3D tumor volume delineations for radiomics prediction of human papillomavirus status on MRI's of oropharyngeal cancer Physica Medica: Pm: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics 101: 36-43
Avasthi, A.A.; Rathi, B.; Avasthi, A. 2022: Oropharyngeal cancer prognosis based on clinicopathologic and quantitative imaging biomarkers with multiparametric model and machine learning methods Artificial Intelligence and Computational Dynamics for Biomedical Research 8: 197-211
Semrau, R.; Duerbaum, H.; Temming, S.; Huebbers, C.; Stenner, M.; Drebber, U.; Klussmann, J.P.; Müller, R.-P.; Preuss, S.F. 2013: Prognostic impact of human papillomavirus status, survivin, and epidermal growth factor receptor expression on survival in patients treated with radiochemotherapy for very advanced nonresectable oropharyngeal cancer Head and Neck 35(9): 1339-1344
Tahmassebi, A.; Wengert, G.J.; Helbich, T.H.; Bago-Horvath, Z.; Alaei, S.; Bartsch, R.; Dubsky, P.; Baltzer, P.; Clauser, P.; Kapetas, P.; Morris, E.A.; Meyer-Baese, A.; Pinker, K. 2019: Impact of Machine Learning with Multiparametric Magnetic Resonance Imaging of the Breast for Early Prediction of Response to Neoadjuvant Chemotherapy and Survival Outcomes in Breast Cancer Patients Investigative Radiology 54(2): 110-117